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Abstract

Exploring machine learning paradigms and the core idea behind it which is gen-
eralization. Also, I talked about neural networks and how deep learning is different
from traditional machine learning as well as how to use activations functions and op-
timizers. At the end, I added a small overview of model evaluation followed by some
of the common types of neural networks architectures nowadays like CNNs, RNNs,
and Transformers.
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Intro

Artificial Intelligence (AI) is all about creating smart machines that act like they have
a brain. Data Science, on the other hand, deals with extracting knowledge and insights
from data using various techniques like statistical analysis and machine learning (ML).
Machine Learning is where the big ideas of AI meet real-world data to teach machines
new tricks. Deep Learning, a part of Machine Learning, is like giving machines a mini-
brain made up of layers that can learn from experience, much like our own brain cells
do.

1 Machine Learning

Since machine learning uses data to actually learn, the most efficient way to use data is
a matrix. Let’s call our matrix X ∈ Rm×n (shown in Figure 1), where n is the number
of data points, and m is the number of features. A feature is a property of the data
point represented in a column. Each row of the data matrix X is an example data
point, x ∈ Rm. You can think of each row as a vector, and each entry of the vector
represents the value of the data point for a particular feature.
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Figure 1: A matrix of house pricing data with some made-up numbers where the features
are number of rooms, house size, city, and price. Each row/vector represents a house or a
data point while each value in a row called entry.

In machine learning, we consider each data point (row) as an example that the model
(the AI) learns from. Let’s say I have a friend called Ahmed who wants to be a physician
but instead of learning from text box and medical school, he decided to learn from
patients and see each patient as an example (he just observes now). After observing a
good number of patients, Ahmed now has some general rules of how to deal with new
patients, and this generalization thing is the core idea behind machine learning. So,
the machines learn by first getting some examples as data matrix after that, and in
traditional machine learning, you’ll need to manually extract useful features from the
data then pass this data into the model with respect to model assumptions (which we’ll
take about later) and finally you get the result. But the game has not ended yet, you
may want to get higher results by getting more data, try other features, or even try
another model.

Figure 2: Machines learn from examples by extracting useful features manually or automat-
ically (like in deep learning) then pass these features into a model to get the result.
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1.1 ML Paradigms

There are three main paradigms in machine learning: supervised, unsupervised, and
reinforcement learning (my area of research). Supervised learning is the most common
one in AI. In supervised learning, we are not only given a matrix of data X, but each
data point xi also has an associated label, yi that we want to predict. Inside supervised
learning, there are two categories of learning: regression where you predict a number
(e.g. house price), and classification where you predict a category (e.g. determining
which images contain a picture of a cat, and which contain a picture of a dog).

Figure 3: Data from the iris dataset proposed by (Fisher, 1936). The x and y axes are two
of the features. The left figure shows the true labels for each of the data points, where
red points belong to the setosa class, pink are virginica, and green are versicolor. The
right figure shows an assignment of each point to a cluster, learned via k-means clustering
(Sanchez, 2020).

In unsupervised learning, we no longer have a target label. Instead, we pass the
data into the model, hoping that the model can find the pattern or clusters in the data.
A well-known clustering algorithm is k-means clustering (MacQueen, 1967), which
learns to assign each data point to one of k clusters such that the distance between all
points within the same cluster is minimized. Formally, it partitions the n observations
into k sets S = {S1, S2, . . . , Sk} to minimize:

argmin
s

k∑
i=1

∑
x∈Si

||x− µi||2

where µi is the mean of the points in cluster Si. Figure 3 (right) shows an example of
k-means clustering applied to the iris data. In this example, with only two features and
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no access to the true labels, k-means is not able to learn a partitioning of the data into
clusters that matches the true labels.

If you think about how you learn and the nature of learning, you will clearly see that
you learn by interacting with your world (or environment). At the same time, you are
acutely aware of how your world responds to what you do, and your goal is to get the
best results through your actions. The same thing happens with our little RL agent;
the agent learns from the world/environment by interacting with it, through trial and
error, and receiving rewards; negative or positive as feedback for performing actions.
The agent is not told which actions to take at first, but the agent uses the feedback
from the environment to discover which actions yield the most reward.

Figure 4: Reinforcement learning process starts with the agent observing the state of the
environment and take action according to the agent’s policy then receives a reward negative
or positive from the environment and move to the next state after that the process repeats.
Based on a similar figure in (Sutton and Barto, 2018).

Reinforcement learning differs from supervised learning; supervised learning is learning
from a training set of labeled examples provided by a knowledgeable external supervisor
giving the AI the solution and the right action to take in a specific situation. The goal
of supervised learning is to generalize a rule for the AI to deal with other situations
that are not in the training set. But in real-world interactive problems, the answer
often emerges through exploration and trial and error. There might not be a definitive
“correct” answer for every situation the agent encounters. Even if there is a right answer
for some situations, it will not work well as a general solution (Sutton and Barto, 2018).

Reinforcement learning is also different from unsupervised learning; unsupervised learn-
ing is finding structure hidden in the collection of unlabeled data. Understanding the
hidden structure can be useful in reinforcement learning, but unsupervised learning
itself does not maximize the reward signal.

So, reinforcement learning is the third machine learning paradigm alongside supervised
learning and unsupervised learning with a goal to maximize the total rewards that the
agent gets from the environment.
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1.2 Generalization

One of the big challenges in machine learning is to improve generalization, which is the
ability to put general rules from seen data to deal with new, unseen data. Basically, we
split our data into three subsets: the training, validation, and test sets. Knowing the
difference between the training error and the validation error can help us identify two
common phenomena: underfitting and overfitting. Underfitting occurs when a model
cannot learn from the training data. When the model is able to perfectly predict the
training data, it might begin to overfit the data, i.e. the model knows more than enough
so it fails to generalize.

Figure 5: A classification task where the model must separate class 1 (green X’s) from
class 2 (circles). Three decision boundaries are shown in red. Underfitting occurs when the
model capacity is not sufficient to accurately partition the data (a). Here, a linear decision
boundary is too simple for the curved distribution of the class labels. However, if the model
capacity is too great, it may overfit the data, perfectly capturing the idiosyncrasies of the
training data at the expense of generalization error (c) (Nautiyal, 2017).

Another idea that is related to overfitting and underfitting is bias-variance tradeoff.
Firstly, bias error happens when the learning algorithm makes incorrect assumptions;
e.g. assuming the data is linearly separable when it is curved which leads to underfitting
and therefore high error. Secondly, variance says how much your results will change
if you train the model on a slightly different dataset.

The bias-variance tradeoff is an important idea that relates to overfitting and under-
fitting. Bias error is a result of incorrect assumptions made by the learning algorithm;
for example, assuming the true decision boundary is linear when it is actually curved.
High bias can lead to underfitting and therefore high training or approximation error.
Variance (V ar(ŵ)) describes how much the solution found by the learning algorithm
is sensitive to small fluctuations in the training data. If the model has a high variance,
we expect that the solution may change significantly if we re-sample a new dataset.
High variance can lead to overfitting, where the model learns the quirks and noise in
the training data too well, but fails to generalize well to unseen data. There are ways to
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deal with overfitting; like regularization or maybe increasing the training size in some
cases, but I’ll introduce these techniques in section 2.2.

2 Deep Learning

Deep learning drives many applications and services, including digital assistants, voice-
enabled TV remotes, credit card fraud detection, self-driving cars, and generative AI.
Unlike traditional machine learning, deep learning can handle unstructured data, such
as text and images, without extensive preprocessing, also deep learning algorithms
automate feature extraction, which reduces dependency on human expertise. As shown
in Figure 6, the core of deep learning is a neural network that is made up of layers
(input, hidden, and output) that contain nodes. Each node computes its output based
on a set of weights (or parameters) applied to the output of the previous layer.

Figure 6: A simple neural network with two hidden layers (in red), and a one-dimensional
output layer (designed with NN-SVG. https://alexlenail.me/NN-SVG).

The layer in Figure 6 is the input layer which applies the inputs from data x. To
compute the output of all the nodes within a layer (say the first hidden), we use matrix
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multiplication: h(1) = ϕ(W (1)x), where W (1) is the matrix of weights (or parameters)
for the first hidden layer, while ϕ is the activation function.

2.1 Activation Functions

An activation function is a fancy way of saying that we are making the output of each
neuron nonlinear because we want to learn non-linear relationships between the input
and the output. Without a non-linear activation function, even the deepest network is
as good as a single one. There are 3 types of activation functions: binary step function,
linear function, and — the most important one — nonlinear functions.

Binary step function depends on a threshold value that decides whether a neuron
should be activated or not. Basically, we compare the inputs with a certain threshold; if
the input is greater than it, then the neuron is activated, else it is deactivated, meaning
that its output is not passed on to the next hidden layer. Linear activation function
is another type of activation functions where the activation is proportional to the input.
The function doesn’t do anything to the weighted sum of the input, it simply outputs
the value it was given.

Figure 7: (a) Binary step activation function when the inputs is greater than or equal to
zero, it is activated, else it is deactivated. (b) simple linear activation function follow the
equation x = y at any point in real numbers.
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2.2 Loss

If you think for a moment, you will find out that step functions and linear functions
are difficult to optimize and can not solve a lot of problems. Therefore, non-linear
activation functions come as a magical way to solve any complex problem, especially
the non-linear ones. Common activation functions are logistic sigmoid, Tanh, and
rectified linear unit (ReLU). You can see in Figure 2.3 that logistic sigmoid outputs
a value between 0 and 1, but suffers from vanishing gradients during training. While
Tanh is similar to sigmoid but outputs values between -1 and 1. A more frequently used
activation function is ReLU (Rectified Linear Unit) which is simple and efficient,
outputs the input directly if positive, otherwise outputs zero. There are variants of
ReLU; like Leaky ReLU that address the “dying ReLU” problem (Xu et al., 2015).

Figure 8: Non-linear activation function like logistic sigmoid, Tanh, and ReLU.

Let’s go back to supervised learning to understand some important concepts, such as
loss and optimization. As a reminder, in supervised learning, we want to predict the
label y given a data point x. Therefore, we make a prediction ŷ = f(x). But how can
we learn useful information from our prediction? First, we need to define our model
and I’m going to use simple linear regression as an example:

ŷ = wTx

Here, w is a vector containing the weights/parameters of the network and this weight
is how much a feature i affects the outcome of the model (e.g. the size of the house
may affect the price while the color of the doors may not). So, to measure how good or
bad our predictions are, we use a loss function. Common loss functions include Mean
Squared Error (MSE) which squares the difference between predicted and actual
values. Also, we have Cross-Entropy Loss which is mostly used for classification
problems and measures the probability distribution difference between predictions and
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true labels. With our linear regression model, I’m going to use the mean squared error
loss function:

L̂(X, y) = 1/n
n∑

i=1

(ŷi − yi)
2

We can now minimize this loss by finding the point at which the gradient of the loss
with respect to the weights (or parameters) w is zero (i.e., ∇wL̂ = 0). Thus, we can
determine the optimal weight vector: w = (XTX)−1XTyT (Goodfellow et al., 2016).

In section 1.2, I talked about overfitting and underfitting without presenting a way to fix
the problem. Here we’ll use regularization as a way to deal with bias-variance tradeoff
and hopefully get a better model for generalization. It achieves this by adding a penalty
term to the loss function, discouraging the model from assigning too much importance
to individual features or coefficients. One of the common examples of regularization is
weight decay, which introduces a penalty on the norm of the weights, e.g.:

J(w) = L̂(X, y;w) + λwTw

where the hyperparameter λ controls the strength of the penalty. I want you to know
that all deep learning algorithms have hyperparameters that must be tuned by testing
the model performance.
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2.3 Optimization

In any machine learning and deep learning model, we want to minimize the loss function
by updating the parameters iteratively during training. In traditional machine learning,
we can easily optimize the loss and reach the optimal point — the point with the least
value of loss — but due to the number of parameters in neural networks, finding the
global minimum becomes difficult.

Figure 9: Red areas show regions of parameter space where the loss is high, blue areas show
regions where the loss is low. Convex loss functions (a) can be found in traditional machine
learning models and are easily to optimize, while neural network architectures can lead to
complicated loss landscapes (b). Reproduced by (Jaques, 2019) from (Li et al., 2017)

So, to find a good optimizer, we need a more complicated technique like gradient-
based optimization which finds the minimum by dividing the loss landscape into
steps with size α or learning rate. A most basic gradient algorithm is stochastic
gradient descent (SGD) where at each step, SGD randomly samples a batch of
training data (a smaller group of the dataset) and computes the gradient loss with
respect to the model parameters ∇wL̂(XB;w). The parameters are then updated by
moving in the direction of the steepest descent (opposite to the gradient).
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The computational cost of SGD is linear in the size of the batch. Using a smaller
batch requires less computation and memory, but introduces more noise to the gradient
updates (Dinh, 2018). Beyond SGD, techniques like Adam (Kingma and Ba, 2017),
RMSProp, and Adagrad help escape local minima and converge faster by adaptively
adjusting learning rates and computing a moving average of the gradient estimates as
a form of momentum (Nesterov, 2013, Sutskever et al., 2013).

2.4 Model Evaluation

Model building projects (shown in Figure 10) follow a well-established life cycle. The
first step involves creating a baseline model, a simple initial version that serves as a
foundation for further development. Next, you feed your data into the model, which
trains it to learn the underlying patterns and relationships. This training process is
followed by rigorous testing to evaluate the model’s performance. During testing, you
can identify issues like overfitting, where the model memorizes the training data too
closely and performs poorly on unseen data, or underfitting, where the model fails to
capture the complexities of the data and has low accuracy. Based on the results of this
evaluation, you can diagnose these issues and make adjustments to improve the model’s
performance. This might involve trying different algorithms, tweaking parameters, or
gathering more data. You then train the improved model again and repeat the entire
process until it meets your desired level of accuracy and generalizability.

Figure 10: Model building follows a cycle: create a baseline model, train, test, diagnose the
issues like overfitting and underfitting, improve, train it again, and repeat this process until
it meets your performance goals.
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How to diagnose what’s happening in your model? The first thing that you need to know
is that it’s good to have one main metric to evaluate your model, like the MSE that we
used before. Other evaluation metrics like accuracy which is the proportion of correct
predictions for a classification task. We also have Precision and Recall (shown in
figure 2.6) are used to measure the ability of the model to identify true positives and
avoid false positives/negatives (relevant for imbalanced datasets). Sometimes you want
to free your head and use F1-Score which is the harmonic mean of precision and recall.

Figure 11: How to calculate precision and recall. Based on a similar figure in wikipedia

2.5 Architectures

Until now, we only talked about one type of neural networks which is a fully-connected
network or feed-forward neural network. In an image classification problem like MNIST
(Lecun et al., 1998) where we have only 28 by 28 pixels which means 784 neurons in
the input layer, but what if we have a bigger image say 100 by 100 pixels, this will
make our hidden layer contains 10 000 neurons and if we have one hidden layer with
100 neurons, it will need one million parameters which is a huge number of parameters
to train for just an image. So, to be more flexible, we can use partially connected layers
like in convolutional neural networks (CNNs) (Lecun et al., 1998);(Fukushima, 1980).
These networks contain learned filters that are applied across all parts of the input,
which is typically an image. In this way, the networks can learn functions which are
translation invariant. For example, the network can learn a filter to detect a cat,
and because it will be applied across many positions in the input image, the network
can detect cats in any part of the image.
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Figure 12: A brief illustration of a ventral stream of the visual cortex in the human vision
system. It consists of primary visual cortex (V1), visual areas (V2 and V4) and inferior
temporal gyrus (Wang and Raj, 2017).

Another type of architecture is recurrent neural networks (RNNs) which model se-
quential data, meaning they have sequential memory. An RNN takes in different
kinds of inputs (text, words, letters, parts of an image, sounds, etc.) and returns differ-
ent kinds of outputs (the next word/letter in the sequence, paired with a fully-connected
network it can return a classification, etc.). While this can give an RNN a rudimentary
form of memory, it also exacerbates problems with vanishing and exploding gradi-
ents. Because computing the gradient depends on multiplying by the same parameter
values repeatedly, this can cause the gradients to explode (if the parameter is greater
than one) or vanish (if the parameter is less than one). Long Short-Term Memory
(LSTM) networks (Hochreiter and Schmidhuber, 1997) help to address this problem by
adding an input, output, and forget gate to each recurrent cell. These gates allow
the network to learn when to update the information in the cell and when to erase it,
rather than simply multiplying by the same parameters each time.

Recently, transformers have emerged as an alternative to RNNs (Vaswani et al., 2017).
These models make use of an attention mechanism to summarize inputs of varying
lengths based on dynamically changing, learned attention weights. Transformers have
been shown to be highly effective at modeling sequences of data, and consequently have
led to impressive results in music generation (Huang et al., 2018) and text generation
(Radford et al., 2019).
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Figure 13: A recurrent neural network with one hidden unit (left) and its unrolling version
in time (right). The unrolling version illustrates what happens in time: St−1, St, and St+1

are the same unit with different states at different time steps. (LeCun et al., 2015)

Final Words

I tried to get you through the foundation of machine learning and deep learning, but
there are many concepts to learn. For this reason, you may like to take a look at
the following resources: (Ying, 2022) for traditional ML algorithms, and (Zhang et al.,
2021); (Turp, 2023); (Sanderson, 2017) for deep learning.
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